Abstract
There has been a resurgence of interest in optical computing since the early 2010s, both in academia and in industry, with much of the excitement centred around special-purpose optical computers for neural-network processing. Optical computing has been a topic of periodic study since the 1960s, including for neural networks in the 1980s and early 1990s, and a wide variety of optical-computing schemes and architectures have been proposed. In this Perspective article, we provide a systematic explanation of why and how optics might be able to give speed or energy-efficiency benefits over electronics for computing, enumerating 11 features of optics that can be harnessed when designing an optical computer. One often-mentioned motivation for optical computing — that the speed of light is fast — is emphatically not a key differentiating physical property of optics for computing; understanding where an advantage could come from is more subtle. We discuss how gaining an advantage over state-of-the-art electronic processors will likely only be achievable by careful design that harnesses more than 1 of the 11 features, while avoiding a number of pitfalls that we describe.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
Greengard, S. Photonic processors light the way. Commun. ACM 64, 16–18 (2021).
Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).
Tucker, R. S. The role of optics in computing. Nat. Photon. 4, 405 (2010).
Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).
Datta, S., Chakraborty, W. & Radosavljevic, M. Toward attojoule switching energy in logic transistors. Science 378, 733–740 (2022).
Artificial intelligence and the rise of optical computing. The Economist (20 December 2022).
Cartlidge, E. Photonic computing for sale. Opt. Photon. News 34, 26–33 (2023).
Feinberg, B., Vengalam, U. K. R., Whitehair, N., Wang, S. & Ipek, E. Enabling scientific computing on memristive accelerators. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 367–382 (IEEE, 2018).
Dubrovsky, M., Ball, M., Kiffer, L. & Penkovsky, B. Towards optical proof of work. In Cryptoeconomic Systems ‘20 Conference (2020).
Pai, S. et al. Experimental evaluation of digitally verifiable photonic computing for blockchain and cryptocurrency. Optica 10, 552–560 (2023).
Ambs, P. Optical computing: a 60-year adventure. Adv. Opt. Technol. 2010, 372652 (2010).
Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017).
Nakajima, M., Tanaka, K. & Hashimoto, T. Scalable reservoir computing on coherent linear photonic processor. Commun. Phys. 4, 1–12 (2021).
Teğin, U., Yıldırım, M., Oğuz, İ., Moser, C. & Psaltis, D. Scalable optical learning operator. Nat. Comput. Sci. 1, 542–549 (2021).
Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).
Zhou, T., Scalzo, F. & Jalali, B. Nonlinear Schrödinger kernel for hardware acceleration of machine learning. J. Lightwave Technol. 40, 1308–1319 (2022).
Semenova, N., Larger, L. & Brunner, D. Understanding and mitigating noise in trained deep neural networks. Neural Netw. 146, 151–160 (2022).
Huang, C. et al. Prospects and applications of photonic neural networks. Adv. Phys. X 7, 1981155 (2022).
Anderson, M. G., Ma, S.-Y., Wang, T., Wright, L. G. & McMahon, P. L. Optical transformers. Preprint at https://arxiv.org/abs/2302.10360 (2023).
Leiserson, C. E. et al. There’s plenty of room at the top: what will drive computer performance after Moore’s law? Science 368, eaam9744 (2020).
Horowitz, M. Computing’s energy problem (and what we can do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 10–14 (IEEE, 2014).
Xu, X. et al. Scaling for edge inference of deep neural networks. Nat. Electron. 1, 216–222 (2018).
Kaplan, J. et al. Scaling laws for neural language models. Preprint at https://arxiv.org/abs/2001.08361 (2020).
Zhai, X., Kolesnikov, A., Houlsby, N. & Beyer, L. Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12104–12113 (IEEE, 2022).
Samsung unveils isocell image sensor with industry’s smallest 0.56 μm pixel. https://news.samsung.com/global/samsung-unveils-isocell-image-sensor-with-industrys-smallest-0-56%CE%BCm-pixel (2022).
Fahrenkopf, N. M. et al. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019).
Chen, X., Li, C. & Tsang, H. K. Device engineering for silicon photonics. NPG Asia Mater. 3, 34–40 (2011).
Borghi, M., Castellan, C., Signorini, S., Trenti, A. & Pavesi, L. Nonlinear silicon photonics. J. Opt. 19, 093002 (2017).
Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).
Chen, R. et al. Opportunities and challenges for large-scale phase-change material integrated electro-photonics. ACS Photon. 9, 3181–3195 (2022).
Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photon. 16, 834–842 (2022).
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
Chen, Y., Xie, Y., Song, L., Chen, F. & Tang, T. A survey of accelerator architectures for deep neural networks. Engineering 6, 264–274 (2020).
Yu, S., Jiang, H., Huang, S., Peng, X. & Lu, A. Compute-in-memory chips for deep learning: recent trends and prospects. IEEE Circuits Syst. Mag. 21, 31–56 (2021).
Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Ohno, S., Tang, R., Toprasertpong, K., Takagi, S. & Takenaka, M. Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photon. 9, 2614–2622 (2022).
Hooker, S. The hardware lottery. Commun. ACM 64, 58–65 (2021).
Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).
Hoefler, T., Häner, T. & Troyer, M. Disentangling hype from practicality: on realistically achieving quantum advantage. Commun. ACM 66, 82–87 (2023).
NVIDIA Hopper architecture in-depth. https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ (2022).
Deal, W., Leong, K., Yoshida, W., Zamora, A. & Mei, X. InP HEMT integrated circuits operating above 1,000 GHz. In 2016 IEEE International Electron Devices Meeting (IEDM), 29-1 (IEEE, 2016).
Thome, F. & Leuther, A. First demonstration of distributed amplifier MMICs with more than 300-GHz bandwidth. IEEE J. Solid-State Circuits 56, 2647–2655 (2021).
Ho, R., Mai, K. W. & Horowitz, M. A. The future of wires. Proc. IEEE 89, 490–504 (2001).
Rabaey, J. M., Chandrakasan, A. & Nikolic, B. Digital Integrated Circuits: A Design Perspective 2nd edn (Pearson, 2002).
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
Hennessy, J. L. & Patterson, D. A. Computer architecture: a quantitative approach. in The Morgan Kaufmann Series in Computer Architecture and Design 6th edn (Morgan Kaufmann, 2017).
Sicard, E. & Trojman, L. Introducing 5-nm FinFET technology in Microwind. https://hal.archives-ouvertes.fr/hal-03254444 (2021).
Xie, Q. et al. Performance comparisons between 7-nm FinFET and conventional bulk CMOS standard cell libraries. IEEE Trans. Circuits Syst. II Express Briefs 62, 761–765 (2015).
Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).
Kahn, J. M. & Miller, D. A. Communications expands its space. Nat. Photon. 11, 5–8 (2017).
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).
Khaddam-Aljameh, R. et al. HERMES-core — a 1.59-tops/mm2 PCM on 14-nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs. IEEE J. Solid-State Circuits 57, 1027–1038 (2022).
Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
Majumdar, A. et al. Design and analysis of photonic crystal coupled cavity arrays for quantum simulation. Phys. Rev. B 86, 195312 (2012).
Da Dalt, N., Knopf, C., Burian, M., Hartig, T. & Eul, H. A 10b 10GHz digitally controlled LC oscillator in 65nm CMOS. In 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers, 669–678 (IEEE, 2006).
Psaltis, D., Brady, D., Gu, X.-G. & Lin, S. Holography in artificial neural networks. Nature 343, 325–330 (1990).
Sell, B. et al. Intel 4 CMOS technology featuring advanced FinFET transistors optimized for high density and high-performance computing. In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 282–283 (IEEE, 2022).
Li, H.-Y. S., Qiao, Y. & Psaltis, D. Optical network for real-time face recognition. Appl. Opt. 32, 5026–5035 (1993).
Goda, A. 3-D NAND technology achievements and future scaling perspectives. IEEE Trans. Electron Dev. 67, 1373–1381 (2020).
Dally, W. J. The future of high-performance computing: are neuromorphic systems the answer? https://www.youtube.com/watch?v=lH3wKXZK9Zc (2022).
Neff, J. A., Athale, R. A. & Lee, S. H. Two-dimensional spatial light modulators: a tutorial. Proc. IEEE 78, 826–855 (1990).
Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).
Mait, J. N., Euliss, G. W. & Athale, R. A. Computational imaging. Adv. Opt. Photon. 10, 409–483 (2018).
Colburn, S., Chu, Y., Shilzerman, E. & Majumdar, A. Optical frontend for a convolutional neural network. Appl. Opt. 58, 3179–3186 (2019).
Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).
Goodman, J. Introduction to Fourier Optics (Roberts and Company Publishers, 2004).
Saade, A. et al. Random projections through multiple optical scattering: approximating kernels at the speed of light. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6215–6219 (IEEE, 2016).
Lent, C. S., Orlov, A. O., Porod, W. & Snider, G. L. (eds) Energy Limits in Computation 1st edn (Springer International Publishing, 2018).
Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).
Boyd, R. W. Nonlinear Optics (Academic Press, 2020).
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
Kia, B., Lindner, J. F. & Ditto, W. L. Nonlinear dynamics as an engine of computation. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 375, 20160222 (2017).
Miller, D. A. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017).
Jose, A. P., Patounakis, G. & Shepard, K. L. Pulsed current-mode signaling for nearly speed-of-light intrachip communication. IEEE J. Solid-State Circuits 41, 772–780 (2006).
Tyndall, N. F. et al. A low-loss, broadband, nitride-only photonic integrated circuit platform. In Quantum 2.0, QTu4B-5 (Optica Publishing Group, 2022).
Cheng, Q., Glick, M. & Bergman, K. Optical interconnection networks for high-performance systems. In Optical Fiber Telecommunications VII, 785–825 (Elsevier, 2020).
Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).
Fillion-Gourdeau, F. & Gagnon, J.-S. On the physical (im)possibility of lightsabers. Eur. J. Phys. 40, 055201 (2019).
Duan, C., LaMeres, B. J. & Khatri, S. P. On and Off-Chip Crosstalk Avoidance in VLSI Design (Springer, 2010).
Lee, J. N. Design Issues in Optical Processing (Cambridge Univ. Press, 1995).
Nassif, N. et al. Sapphire rapids: the next-generation intel xeon scalable processor. In 2022 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65, 44–46 (IEEE, 2022).
Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).
Goodman, J. W. Fan-in and fan-out with optical interconnections. Optica Acta Int. J. Opt. 32, 1489–1496 (1985).
McArdle, N., Naruse, M., Toyoda, H., Kobayashi, Y. & Ishikawa, M. Reconfigurable optical interconnections for parallel computing. Proc. IEEE 88, 829–837 (2000).
Wang, T. & Arrathoon, R. Limits of optical and electrical fan-out versus power and fan-out versus bandwidth. In Hybrid Image and Signal Processing II Vol. 1297, 133–149 (SPIE, 1990).
Ji, L. & Heuring, V. P. Impact of gate fan-in and fan-out limits on optoelectronic digital circuits. Appl. Opt. 36, 3927–3940 (1997).
Chen, J., Clark, L. & Cao, Y. Maximum fan-in/out: ultra-low voltage circuit design in the presence of variations. IEEE Circ. Dev. Mag. 21, 12–20 (2006).
de Groot, P. J. & Noll, R. J. Adaptive neural network in a hybrid optical/electronic architecture using lateral inhibition. Appl. Opt. 28, 3852–3859 (1989).
Bernstein, L. et al. Single-shot optical neural network. Sci. Adv. 9, eadg7904 (2023).
Yao, R. et al. Compact and low-insertion-loss 1×N power splitter in silicon photonics. J. Lightwave Technol. 39, 6253–6259 (2021).
Xu, X. et al. 11 Tops photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).
Murmann, B., Bankman, D., Chai, E., Miyashita, D. & Yang, L. Mixed-signal circuits for embedded machine-learning applications. In 2015 49th Asilomar Conference on Signals, Systems and Computers, 1341–1345 (IEEE, 2015).
DeBenedictis, E. P. Computational complexity and new computing approaches. Computer 49, 76–79 (2016).
Shi, L., Zheng, G., Tian, B., Dkhil, B. & Duan, C. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2, 1811–1827 (2020).
Aluf, O. Optoisolation Circuits: Nonlinear Applications in Engineering (World Scientific, 2012).
Vadlamani, S. K., Xiao, T. P. & Yablonovitch, E. Physics successfully implements Lagrange multiplier optimization. Proc. Natl Acad. Sci. USA 117, 26639–26650 (2020).
E, W. & Yu, B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018).
Feynman, R. P. QED: The Strange Theory of Light and Matter (Princeton Univ. Press, 2006).
Wen, K. Injection-locked Laser Network for Solving NP-Complete Problems. PhD thesis, Stanford Univ. (2012).
Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).
Andersen, U. L., Gehring, T., Marquardt, C. & Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Philos. Trans. Royal Soc. Lond. A Math. Phys. Eng. Sci. 361, 1655–1674 (2003).
Pearson, B. J. & Jackson, D. P. A hands-on introduction to single photons and quantum mechanics for undergraduates. Am. J. Phys. 78, 471–484 (2010).
Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
Duprez, H. et al. Macroscopic electron quantum coherence in a solid-state circuit. Phys. Rev. X 9, 021030 (2019).
Lee, T. H. The Design of CMOS Radio-frequency Integrated Circuits (Cambridge Univ. Press, 2003).
Safavi-Naeini, A. H., Van Thourhout, D., Baets, R. & Van Laer, R. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics: Publisher’s note. Optica 6, 410 (2019).
Dwivedi, S. et al. Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers. J. Lightwave Technol. 33, 4471–4477 (2015).
Rabaey, J. M., Chandrakasan, A. & Nikolic, B. Digital Integrated Circuits: A Design Perspective 2nd edn, Ch. 4 (Pearson, 2002).
Bremermann, H. J. Quantum noise and information. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4, 15–20 (1967).
Kao, Y.-C., Chen, H.-A. & Ma, H.-P. An FPGA-based high-frequency trading system for 10 gigabit ethernet with a latency of 433 ns. In 2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT) 1–4 (IEEE, 2022).
Pope, R. et al. Efficiently scaling transformer inference. In Proc. of Machine Learning and Systems (MLSys, 2023).
Alexoudi, T., Kanellos, G. T. & Pleros, N. Optical RAM and integrated optical memories: a survey. Light Sci. Appl. 9, 1–16 (2020).
Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).
Rodrigues, S. P. et al. Weighing in on photonic-based machine learning for automotive mobility. Nat. Photon. 15, 66–67 (2021).
Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 1–10 (2018).
Minzioni, P. et al. Roadmap on all-optical processing. J. Opt. 21, 063001 (2019).
Huang, C. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).
Chen, Y. et al. Photonic unsupervised learning processor for secure and high-throughput optical fiber communication. Preprint at https://arxiv.org/abs/2203.03807 (2022).
Ghobadi, M. Emerging optical interconnects for AI systems. In 2022 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2022).
Williamson, I. A. et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–12 (2019).
Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).
Dinc, N. U., Psaltis, D. & Brunner, D. Optical neural networks: the 3D connection. Photoniques 104, 34–38 (2020).
Boahen, K. Dendrocentric learning for synthetic intelligence. Nature 612, 43–50 (2022).
Morris, R., Kodi, A. K. & Louri, A. Dynamic reconfiguration of 3d photonic networks-on-chip for maximizing performance and improving fault tolerance. In 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, 282–293 (IEEE, 2012).
Moughames, J. et al. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. Optica 7, 640–646 (2020).
Tait, A. N. Quantifying power in silicon photonic neural networks. Phys. Rev. Appl. 17, 054029 (2022).
Ramey, C. Silicon photonics for artificial intelligence acceleration: Hotchips 32. In IEEE Hot Chips 32 Symposium, 1–26 (IEEE, 2020).
Zhang, Y. et al. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett. 118, 210501 (2021).
Martin-Monier, L. et al. Endurance of chalcogenide optical phase change materials: a review. Opt. Mater. Express 12, 2145–2167 (2022).
Hamerly, R., Bandyopadhyay, S. & Englund, D. Asymptotically fault-tolerant programmable photonics. Nat. Commun. 13, 6831 (2022).
Mabuchi, H. Nonlinear interferometry approach to photonic sequential logic. Appl. Phys. Lett. 99, 153103 (2011).
Kerckhoff, J., Armen, M. A. & Mabuchi, H. Remnants of semiclassical bistability in the few-photon regime of cavity QED. Opt. Expr. 19, 24468–24482 (2011).
Tezak, N. & Mabuchi, H. A coherent perceptron for all-optical learning. EPJ Quant. Technol. 2, 1–22 (2015).
Shainline, J. M., Buckley, S. M., Mirin, R. P. & Nam, S. W. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013 (2017).
Ma, S.-Y., Wang, T., Laydevant, J., Wright, L. G. & McMahon, P. L. Quantum-noise-limited optical neural networks operating at a few quanta per activation. Preprint at https://arxiv.org/abs/2307.15712 (2023).
Johnson, A. R. et al. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 5117–5120 (2015).
Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics lidar. Nature 603, 253–258 (2022).
Stallings, W. Data and Computer Communications 8th edn (Pearson, 2007).
Kleveland, B. et al. High-frequency characterization of on-chip digital interconnects. IEEE J. Solid-State Circuits 37, 716–725 (2002).
Qaxial. RG142B/U Flexible PTFE High Power Coaxial Cable Datasheet (2022).
Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Expr. 19, 24090–24101 (2011).
Schubert, E. F. Light-Emitting Diodes 2nd edn (Cambridge Univ. Press, 2012).
Corning. SMF-28 ULL Optical Fiber Portfolio Product Information (2021).
Miller, D. A. B. & Ozaktas, H. M. Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture. J. Parallel Distrib. Comput. 41, 42–52 (1997).
Huang, D., Sze, T., Landin, A., Lytel, R. & Davidson, H. L. Optical interconnects: out of the box forever? IEEE J. Sel. Top. Quantum Electron. 9, 614–623 (2003).
Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photon. 7, 081301 (2022).
Johnson, M., Thompson, M. G. & Sahin, D. Low-loss, low-crosstalk waveguide crossing for scalable integrated silicon photonics applications. Opt. Expr. 28, 12498–12507 (2020).
Stepanovsky, M. A comparative review of MEMS-based optical cross-connects for all-optical networks from the past to the present day. IEEE Commun. Surv. Tutor. 21, 2928–2946 (2019).
Barredo, D., Lienhard, V., De Leseleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).
Wayne, M. et al. A 500 × 500 dual-gate SPAD imager with 100% temporal aperture and 1 ns minimum gate length for film and phasor imaging applications. IEEE Trans. Electron Devices 69, 2865–2872 (2022).
Acknowledgements
The author gratefully acknowledges many helpful conversations with co-workers including D. Brunner, R. Hamerly, H. Mabuchi, A. Majumdar, A. Marandi, E. Ng, T. Onodera, T. Wang, L. Wright and Y. Yamamoto; these conversations over several years have shaped his understanding of optical computing. The author also gratefully acknowledges S. Agarwal for explanations about analog-electronic crossbars and B. Govind for discussions about electrical interconnects. The author thanks M. Anderson, T. Wang and F. Wu for providing detailed feedback on a draft of this manuscript. This work has been financially supported in part by the National Science Foundation (Award CCF-1918549), NTT Research and a David and Lucile Packard Foundation Fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author is listed as an inventor on several U.S. provisional patent applications relating to optical computing (63/149,974; 63/178,318; 63/392,042).
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
McMahon, P.L. The physics of optical computing. Nat Rev Phys 5, 717–734 (2023). https://doi.org/10.1038/s42254-023-00645-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-023-00645-5
This article is cited by
-
Metasurface enabled high-order differentiator
Nature Communications (2025)
-
Asymmetrical estimator for training encapsulated deep photonic neural networks
Nature Communications (2025)
-
Tunnelling escape of waves
Nature Photonics (2025)
-
Addressing optical modulator non-linearities for photonic neural networks
Communications Engineering (2025)
-
Stochastic logic in biased coupled photonic probabilistic bits
Communications Physics (2025)